Proposition 7.4:
Every monotonic function $f:[a, b] \longrightarrow \mathbb{R}$ is integrable.
Proof:
Let f be monotonically increasing (for monotonically decreasing f there is an analogous proof). Set

$$
x_{k}:=a+k \cdot \frac{b-a}{n}, \quad(k=0,1, \ldots, n)
$$

\Rightarrow this gives an equidistant subdivision of $[a, b]$. With respect to this subdivision define step functions $\varphi, \psi \in S[a, b]$:

$$
\begin{aligned}
& \varphi(x):=f\left(x_{k-1}\right) \text { for } x_{k-1} \leqslant x<x_{k}, \\
& \psi(x):=f\left(x_{k}\right) \quad \text { for } \quad x_{k-1} \leqslant x<x_{k}
\end{aligned}
$$

and $\varphi(b)=\psi(b)=f(b)$. As f is monotonically increasing, we have

$$
\varphi \leq f_{b} \leq \psi
$$

and $\int_{a}^{b} \psi(x) d x-\int_{a}^{b} \varphi(x) d x$

$$
=\sum_{k=1}^{n} f\left(x_{k}\right)\left(x_{k}-x_{k-1}\right)-\sum_{k=1}^{n} f\left(x_{k-1}\right)\left(x_{k}-x_{k-1}\right)
$$

$$
\begin{aligned}
& =\frac{(b-a)}{n}\left(\sum_{k=1}^{n} f\left(x_{k}\right)-\sum_{k=1}^{n} f\left(x_{k-1}\right)\right) \\
& =\frac{b-a}{n}\left(f\left(x_{n}\right)-f\left(x_{0}\right)\right) \leqslant \varepsilon
\end{aligned}
$$

for n big enough.
Prop. $7.2 \Rightarrow f$ is integrable.
Example 7.2:
i) We use rectangles to estimate the area under the parabola $y=x^{2}$ from 0 to 1:

\rightarrow We notice that the area of S must be between 0 and 1 (S is contained in square with side length 1).
\rightarrow Improve by dividing S into 4 strips $S_{1}, S_{2}, S_{3}, S_{4}$:

For approximated area we then get:

$$
\begin{aligned}
R_{4} & =\frac{1}{4} \cdot\left(\frac{1}{4}\right)^{2}+\frac{1}{4} \cdot\left(\frac{1}{2}\right)^{2}+\frac{1}{4} \cdot\left(\frac{3}{4}\right)^{2}+\frac{1}{4} \cdot 1^{2} \\
& =\frac{15}{32}=0.46875
\end{aligned}
$$

We also see from the figure that the actual area A of S is less than R_{4} :

$$
A<0.46875
$$

\rightarrow Use second approximation:
 The area is given here by:

$$
\begin{aligned}
L_{4} & =\frac{1}{4} \cdot 0^{2}+\frac{1}{4} \cdot\left(\frac{1}{4}\right)^{2} \\
& +\frac{1}{4} \cdot\left(\frac{1}{2}\right)^{2}+\frac{1}{4} \cdot\left(\frac{3}{4}\right)^{2} \\
& =\frac{7}{32}=0.21875
\end{aligned}
$$

\rightarrow get the following estimate for area of s :

$$
0.21875<A<0.46875
$$

\rightarrow repeat the procedure for larger number of strips:

Computing the sum of areas we now get the following estimate:

$$
\begin{gathered}
L_{8}<A<R_{8} \\
0.2734
\end{gathered} \quad 0.3984
$$

With 1000 strips we narrow it down to:

$$
0.3328335<A<0.3338335
$$

$\rightarrow A \approx 0.3333335$ is a good estimate
ii) We show that $\lim _{n \rightarrow \infty} R_{n}=\frac{1}{3}$

Proof:
We have $R_{n}=\sum_{i=1}^{n} r_{i}$, where $r_{i}=\frac{1}{n}\left(\frac{i}{n}\right)^{2}$

$$
\begin{aligned}
\Rightarrow R_{n} & =\frac{1}{n}\left(\frac{1}{n}\right)^{2}+\frac{1}{n}\left(\frac{2}{n}\right)^{2}+\frac{1}{n}\left(\frac{3}{n}\right)^{2}+\cdots+\frac{1}{n}\left(\frac{n}{n}\right)^{2} \\
& =\frac{1}{n} \cdot \frac{1}{n^{2}}\left(1^{2}+2^{2}+3^{2}+\cdots+n^{2}\right) \\
& =\frac{1}{n^{3}}\left(1^{2}+2^{2}+3^{2}+\cdots+n^{2}\right)
\end{aligned}
$$

Now we use

$$
\begin{equation*}
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{*}
\end{equation*}
$$

(Can be shown by Induction)
Using (x) we get

$$
R_{n}=\frac{1}{n^{3}} \frac{n(n+1)(2 n+1)}{6}=\frac{(n+1)(2 n+1)}{6 n^{2}}
$$

Thus we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} R_{n} & =\lim _{n \rightarrow \infty} \frac{(n+1)(2 n+1)}{6 n^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{6}\left(\frac{n+1}{n}\right)\left(\frac{2 n+1}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{6}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right) \\
& =\frac{1}{6} \cdot 1 \cdot 2=\frac{1}{3}
\end{aligned}
$$

From Prop. 7.4 we know that $\lim _{n \rightarrow \infty} L_{n}=\frac{1}{3}$ as well. Thus altogether we get

$$
\int_{0}^{1} x^{2} d x=\frac{1}{3}=A
$$

Definition 7.4 (Riemann sums):
Let $f:[a, b] \rightarrow \mathbb{R}$ be a function,

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b
$$

a sub-division of $[a, b]$ and ξ_{k} an arbitrary point on the interval $\left[x_{k-1}, x_{k}\right]$. We denote by

$$
Z:=\left(\left(x_{k}\right)_{0 \leq k \leq n}\left(\xi_{k}\right)_{1 \leq k \leq n}\right)
$$

the set of x_{k} and ζ_{k}. Then

$$
S(Z, f):=\sum_{k=1}^{n} f\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)
$$

is called the Riemann sum of the function f with respect to to Z. The Riemann sum is nothing else than the integral of the step function which approximates f at the points ξ_{k}.

The "fineness" of Z is defined as

$$
\mu(z):=\max _{1 \leqslant k \leqslant n}\left(x_{k}-x_{k-1}\right)
$$

Theorem 7.1:
Let $f:[a, b] \rightarrow \mathbb{R}$ be a Riemann-integrable function. There there exists for every $\varepsilon>0$ a $\delta>0$, such that for every choice Z of points x_{k} and ξ_{k} of fineness($\left.Z\right)<\delta$ we have:

$$
\int_{a}^{b} f(x) d x-S(z, f) \mid \leqslant \varepsilon
$$

One can also write this as follows:

$$
\lim _{u(z) \rightarrow 0} S(z, f)=\int_{a}^{b} f(x) d x
$$

For the proof we have to do some work.
Proposition 7.5 (Linearity and Monotony):
Let $f, g:[a, b] \rightarrow \mathbb{R}$ be integrable and $x \in \mathbb{R}$.
Then the functions $f+g$ and λf are also integrable and we have:
i) $\int_{a}^{b}(f+g)(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
ii) $\int_{a}^{b}(\lambda f)(x) d x=\lambda \int_{a}^{b} f(x) d x$.
iii) $f \leqslant g \Rightarrow \int_{a}^{b} f(x) d x \leqslant \int_{a}^{b} g(x) d x$.

Proof:
We want to use the criterion of Prop. 7.2
i) Let $\varepsilon>0$ be given. Then we have step functions $\varphi_{1}, \psi_{1}, \varphi_{2}, \psi_{2} \in S[a, b]$ st.

$$
\varphi_{1} \leqslant f \leqslant \psi_{1}, \quad \varphi_{2} \leqslant g \leqslant \psi_{2}
$$

and

$$
\begin{aligned}
& \int_{a}^{b} \psi_{1}(x) d x-\int_{a}^{b} \varphi_{1}(x) d x \leqslant \frac{\varepsilon}{2} \quad \text { and } \\
& \int_{a}^{b} \psi_{2}(x) d x-\int_{a}^{b} \varphi_{2}(x) d x \leqslant \frac{\varepsilon}{2}
\end{aligned}
$$

Addition gives

$$
\varphi_{1}+\varphi_{2} \leqslant f+g \leqslant \psi_{1}+\psi_{2}
$$

and

$$
\int_{a}^{b}\left(\psi_{1}(x)+\psi_{2}(x)\right) d x-\int_{a}^{b}\left(\varphi_{1}(x)+\varphi_{2}(x)\right) d x \leqslant \varepsilon
$$

$\Rightarrow f+g$ is integrable with integral given by i)
ii) The claim is trivial for $\lambda=0$ and $\lambda=-1$ \Rightarrow need to show for $\lambda>0$. Let $\varepsilon>0$ be given. $\Rightarrow \exists$ step functions φ, ψ with $\varphi \leq f \leq \psi$ and

$$
\begin{aligned}
& \int_{a}^{b} \psi(x) d x-\int_{a}^{b} \varphi(x) d x \leqslant \frac{\varepsilon}{\lambda} \\
& \Rightarrow \lambda \leqslant \lambda f \leqslant \lambda \psi \text { and } \\
& \int_{a}^{b}(\lambda \psi)(x) d x-\int_{a}^{b}(\lambda \varphi)(x) d x \leqslant \varepsilon
\end{aligned}
$$

From this ii) follows.
iii) trivial.

