Proposition 7.4:
Every monotonic function
$$f: [a, b] \rightarrow \mathbb{R}$$
 is
integrable.
Proof:
Zet f be monotonically increasing (for
monotonically decreasing f there is an
analogous proof). Set
 $x_{k} := a + K \cdot \frac{b-a}{n}$, $(k_{k=0}, l_{1}, ..., n)$
 \Longrightarrow this gives an equidistant sub-division
of $[a, b]$. With respect to this subdivision
define step functions $q: \forall \in S[a, b]:$
 $q(x) := f(x_{K-1})$ for $x_{K-1} \leq x < x_{K}$,
 $\forall (x) := f(x_{K-1})$ for $x_{K-1} \leq x < x_{K}$,
 and $q(b) = \forall (b) - f(b)$. As f is monotonically
increasing, we have
 $q \leq f \leq 4$
and $\int_{K=1}^{b} \frac{1}{2}(x_{K-1})(x_{K-1} - x_{K-1}) - \sum_{K=1}^{m} \frac{f(x_{K-1})(x_{K} - x_{K-1})}{x_{K-1}}$

$$= (\underline{b-a}) \left(\sum_{K=1}^{n} f(x_{K}) - \sum_{K=1}^{n} f(x_{K-1}) \right)$$

$$= \underline{b-a} (f(x_{n}) - f(x_{n})) \leq \varepsilon$$
for n big enough.
Prop. 7.2 \Longrightarrow f is integrable.

$$\boxed{I}$$

$$\frac{E \times ample 7.2:}{1}$$
i) We use vectangles to estimate the area under the parabola $y = x^{+}$ from 0 to 1:
 $\frac{1}{y = x^{+}} / (1,1)$

$$\xrightarrow{Y} = x^{+} / (1,1)$$

→ get the following estimate for area of 5:
0.21875 < A < 0.46875
→ repeat the procedure for larger number
of strips:

$$y_{y=x^2}$$
 ((11)
 $y_{y=x^2}$ ((11))
 $y_{y=x^2}$

$$= \sum R_{n} = \frac{1}{n} \left(\frac{1}{n} \right)^{2} + \frac{1}{n} \left(\frac{2}{n} \right)^{2} + \frac{1}{n} \left(\frac{3}{n} \right)^{2} + \dots + \frac{1}{n} \left(\frac{n}{n} \right)^{2}$$

$$= \frac{1}{n} \cdot \frac{1}{n^{2}} \left(1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \right)$$

$$= \frac{1}{n^{3}} \left(1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \right)$$

Now we use

$$\frac{1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}}{(2n+1)}$$
(*)
(Can be shown by Induction)
Using (*) we get

$$R_{n} = \frac{1}{n^{3}} \frac{n(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)}{6n^{2}}$$

Thus we have

$$\lim_{n \to \infty} R_n = \lim_{n \to \infty} \frac{(n+1)(2n+1)}{6n^2}$$
$$= \lim_{n \to \infty} \frac{1}{6} \left(\frac{n+1}{n}\right) \left(\frac{2n+1}{n}\right)$$
$$= \lim_{n \to \infty} \frac{1}{6} \left(1 + \frac{1}{n}\right) \left(2 + \frac{1}{n}\right)$$
$$= \frac{1}{6} \cdot 1 \cdot 2 = \frac{1}{3} \square$$

From Prop. 7.4 we know that
$$\lim_{x \to \infty} \lim_{x \to \infty} \lim_{x \to \infty} \frac{1}{3}$$

as well. Thus altogether we get
 $\int_{0}^{1} x^{2} dx = \frac{1}{3} = A$

Definition 7.4 (Riemann sums): Let f: [a, b] -> R be a function, $a = x_0 < x_1 < \cdots < x_n = b$ a sub-division of [a,b] and 3x an arbitrary point on the interval [XK-1, XK]. We denote by $\mathbb{Z} := \left(\left(\chi_{\kappa} \right)_{0 \leq \kappa \leq n}, \left(\widetilde{\chi}_{\kappa} \right)_{1 \leq \kappa \leq n} \right)$ the set of xx and Zx. Then $S(Z, f) \coloneqq \sum_{k=1}^{\infty} f(\tau_k)(x_k - x_{k-1})$ is called the Riemann sum of the function f with respect to to Z. The Riemann sum is nothing else than the integral of the step function which approximates f at the points 3k.

The "fineness" of
$$Z$$
 is defined as
 $\mathcal{M}(Z) := \max_{\substack{1 \le k \le n}} (x_k - x_{k-1})$

I be over $\overline{7.1}$: Zet $f: [a, b] \longrightarrow \mathbb{R}$ be a Riemann-integrable function. There there exists for every \$>0 a S > 0, such that for every choice \mathbb{Z} of points x_k and \overline{i}_k of fineness $n(\mathbb{Z}) < S$ we have:

$$\left| \int_{a}^{b} f(x) dx - S(Z, f) \right| \leq \varepsilon.$$

One can also write this as follows:

$$\lim_{x \to 0} S(Z, f) = \int_{a}^{b} f(x) dx.$$

For the proof we have to do some work. <u>Proposition 7.5</u> (Xinearity and Monotomy): Xet f,g: [a,b] $\longrightarrow \mathbb{R}$ be integrable and ack. Then the functions f+g and af are also integrable and we have: i) $\int (f+g)(x)dx = \int f(x)dx + \int g(x)dx$

ii)
$$\int_{a}^{b} (\lambda f)(\lambda) dx = \lambda \int_{a}^{b} f(\lambda) dx.$$

iii) $f \leq g \implies \int_{a}^{b} f(\lambda) dx \leq \int_{a}^{b} g(\lambda) dx.$
Proof.
We want to use the criterian of Prop. 7.2
i) $\lambda et \geq 0$ be given. Then we have
step functions $f(x, y_1, y_2, y_2 \in S[a, b] s.t.$
 $f_1 \leq f \leq Y_1, \quad g_2 \leq g \leq Y_2$
and $b \qquad b$
 $\int Y_1(x) dx - \int_{a}^{b} f_1(\lambda) dx \leq \frac{s}{2}$ and
 $\int_{a}^{b} Y_2(x) dx - \int_{a}^{b} f_2(x) dx \leq \frac{s}{2}$
Addition gives
 $f_1 + f_2 \leq f + g \leq Y_1 + Y_2$
and $\int_{a}^{b} (Y_1(x) + Y_2(x)) dx \leq \frac{s}{2}.$
 $\Rightarrow f + g$ is integrable with integral given by i)
ii) The claim is trivial for $\lambda = 0$ and $\lambda = -1$
 \Rightarrow need to show for $\lambda > 0$. Let $\varepsilon > 0$ be given.
 $\Rightarrow T$ step functions f, T with $f \leq f \leq T$ and

$$\int_{a}^{b} \Psi(x) dx - \int_{a}^{b} \Psi(x) dx \leq \frac{\varepsilon}{2}$$

$$\Rightarrow 2\Psi \leq 2\Psi \leq 2\Psi \text{ and }$$

$$\int_{b}^{b} (2\Psi) (x) dx - \int_{a}^{b} (2\Psi) (x) dx \leq \varepsilon$$

$$From this ii) follows.$$

$$iii) trivial.$$

 \square